-
Jeremy Evans authored
This optimizes the following calls: * ~10-15% for f(*a) when a does not end with a flagged keywords hash * ~10-15% for f(*a) when a ends with an empty flagged keywords hash * ~35-40% for f(*a, **kw) if kw is empty This still copies the array contents to the VM stack, but avoids some overhead. It would be faster to use the array pointer directly, but that could cause problems if the array was modified during the call to the function. You could do that optimization for frozen arrays, but as splatting frozen arrays is uncommon, and the speedup is minimal (<5%), it doesn't seem worth it. The vm_send_cfunc benchmark has been updated to test additional cfunc call types, and the numbers above were taken from the benchmark results.
Jeremy Evans authoredThis optimizes the following calls: * ~10-15% for f(*a) when a does not end with a flagged keywords hash * ~10-15% for f(*a) when a ends with an empty flagged keywords hash * ~35-40% for f(*a, **kw) if kw is empty This still copies the array contents to the VM stack, but avoids some overhead. It would be faster to use the array pointer directly, but that could cause problems if the array was modified during the call to the function. You could do that optimization for frozen arrays, but as splatting frozen arrays is uncommon, and the speedup is minimal (<5%), it doesn't seem worth it. The vm_send_cfunc benchmark has been updated to test additional cfunc call types, and the numbers above were taken from the benchmark results.
Loading